Stress Test 2012: sh2 Hybrid Tolerance to Crowding and Nitrogen Stresses

Marty Williams
USDA-ARS
Univ. of Illinois

U.S. corn grain yields (1866 – 2011)

U.S. corn grain yields (1866 – 2011)

= (gross return) - (contract cost) - (population cost)

```
= (gross return) - (contract cost) - (population cost)
      kmass/A
          \mathbf{X}
     kmass/case
          X
      wholesale
    cash price of
    canned corn
```

```
= (gross return) - (contract cost) - (population cost)
      kmass/A
    13.5 lb/case
    $12/case cash phice of
    canned corn
```

```
= (gross return) - (contract cost) - (population cost)
```

```
kmass/A

x

13.5 lb/case

x

rate

$12/case
Cash place of canned corn
```

```
= (gross return) - (contract cost) - (population cost)
```

```
kmass/A

x

13.5 lb/case

x

$100/ton

x

$12/case
Casii place of
canned corn
```

canned corn

= (gross return) - (contract cost) - (population cost)

```
kmass/A gmass/A plant density

x x x x

13.5 lb/case g $100/ton

x seed cost

$12/case
Cash place of
```

canned corn

= (gross return) - (contract cost) - (population cost)

```
kmass/A gmass/A plant density

x x x

13.5 lb/case

x s3/1,000 kernels

x s12/case
Cash place of
```


What's the current situation? Example of a top-performing hybrid

Objective

- Compare yield, recovery, and profitability of sh2 processing hybrids
 - tolerance to crowding stress
 - □ tolerance to nitrogen stress

Things this study won't provide:

- Plant population you should use
- N rate you should apply
- Other management considerations
- Your yield this year or next
- Election results, winning lottery numbers, etc.

Things this trial will provide:

 Through sound, objective science, identify hybrids most tolerant to yield-limiting stresses

Things this trial will provide:

 Through sound, objective science, identify hybrids most tolerant to yield-limiting stresses

Figure 10-25b Biological Science, 2/e

- 24 entries
- 50% and 150% N rec
- RCBD, 4 reps

- Planted 5/17/12
- 37,000 kernels/A thinned to 29,000 plants/A

Temperature

Month	Mean temp (F)	Departure from mean (F)	Days>90	Note
May	68.6	+6.1	6	3 days tie/break record
June	72.5	+0.3	9	
July	82.5	+7.5	27	Record no. days above 90 7 days above 100
August	80.5	+7.2	6	

Temperature

Month	Mean temp (F)	Departure from mean (F)	Days>90	Note
May	68.6	+6.1	6	3 days tie/break record
June	72.5	+0.3	9	
July	82.5	+7.5	27	Record no. days above 90 7 days above 100
August	80.5	+7.2	6	

Kernel moisture (%)

Kernel moisture (%)

Tolerance to crowding stress

Tolerance to crowding stress

Tolerance to crowding stress

Tolerance to N stress

N tolerance =
$$\frac{(response\ 150\% - response\ 50\%)}{(response\ 150\% + response\ 50\%)}$$

- =0, hybrid is tolerant to N stress
- >0, hybrid is susceptible to N stress

Top 10 sh2 processing hybrids

Rank	Cultivar	Gross profit	Tolerance to
		margin (\$/A)	N stress
10	XTH 1079	5,833	\odot
9	DMX 21-30	5,892	$\odot \odot \odot$
8	XTH 1679	5,981	\odot
7	DMC 22-85	5,983	\odot
6	Marvel Edge	6,012	$\odot \odot \odot$
5	ACX SS1508DY	6,113	\odot
4	DMC 21-84	6,454	$\odot \odot \odot$
3	GG 605	6,523	$\odot \odot \odot$
2	DMX 22-90	6,617	
1	GG 641	7,083	$\odot \odot \odot$

Key points

23 hybrids compared at a population that maximizes gross profit margin to processor

All experienced identical conditions

- excellent pest control
- excess nitrogen
- normal water supply
- in a season that was on the hot side

Certain hybrids performed strongly, others did not

Acknowledgements

- Research crew
 - □ Jim Moody
 - Daniel Li
 - Troy Hurdelbrink
 - Alex Hathcock
 - Brad Tomasek
 - Eunsoo Choe
 - Ronnie Warsaw
 - Bryan Warsaw

- Funding & seed
 - MWFPA
 - Abbott & Cobb
 - □ Crites Moscow
 - Crookham Company
 - □ Del Monte
 - □ IFSI
 - General Mills
 - Seminis
 - Syngenta